MODULE HANDBOOK DESCRIPTION | Module designation | Physics I | | |---|---|------| | Code | FBS1103 | | | Semester(s) in which the module is taught | 1/first year | | | Person responsible for the module | Dr.rer.nat Teti Zubaidah, S.T., M.T. | | | Language | Indonesian/English | | | Relation to curriculum | Compulsory for all majors | | | Teaching methods | lectures, small group discussion, case base method. | | | Workload (incl. contact hours, self-study hours) | Contact minutes every week, each week of the 16 weeks/semester: Lectures: 3 x 50 minutes Exercises and Assignments: 3 x 60 minutes Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week. | | | Credit points | 3 SKS (~ 4.8 ECTS) | | | Required and recommended prerequisites for joining the module | - | | | Module
objectives/intended
learning outcomes | 1. Students are able to understand the basic concepts of measurements, quantities & units, mechanics, kinematics, thermodynamics, and energy conservations. | PLO2 | | | 2. Students are able to analyse physical problems related to mechanics and kinematics. | PLO3 | | | 3. Students are able to solve daily life physical problems in teamwork. | PLO7 | | Content | Introduction to College Physics, Physics & Measurements, Scalar & Vector, Motion in one-dimension with constant velocity, Motion in one-dimension with acceleration & fall free motion, Motion in two-dimension, Circular motion, Universal gravitation, Newton's Laws, Momentum & Collision, Work, Energy & Power, Laws of thermodynamics, Energy conservations. | | | Examination forms | Written case studyMidterm and final test | |------------------------------------|---| | Study and examination requirements | The final grade in the module is composed of: a. Attendance: 10% b. Case assessment: 4 x 15% = 60% c. Midterm assessment: 15% d. Final assessment: 15% Students must have a final grade of 65% or higher to pass | | Reading list | Giancoli D.C., 2014, Physics - Principle with Application Vol. 1 7th Ed., Pearson. Serway R.A. & Jewett Jr. J.W., 2014, Physics for Scientists and Engineers with Modern Physics 9th Ed., BROOKS/COLE CENGAGE Learning. Paul Peter Urone & Roger Hinrichs, 2020, College Physics, OpenStax. Samuel J. Ling, Jeff Sanny, William Moebs, 2021, University Physics Volume 1, OpenStax. Samuel J. Ling, Jeff Sanny, William Moebs, 2021, University Physics Volume 2, OpenStax. |