

Module designation	Engineering Mathematics I	
Code	FBS2120	
Semester(s) in which the module is taught	3/second year	
Person responsible for the module	Supriono, S.T., M.T.	
Language	Indonesian	
Relation to curriculum	Compulsory for all major	
Teaching methods	lectures, small group discussion, case base method.	
Workload (incl. contact hours, self-study hours)	 Contact minutes every week, each week of the 16 wee Lectures: 3 x 50 minutes Exercises and Assignments: 3 x 60 minutes Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week. 	ks/semester:
Credit points	3 SKS (~ 4.8 ECTS)	
Required and recommended prerequisites for joining the module	Calculus I (FBS1104) Calculus II (FBS1212)	
Module objectives/intended learning outcomes	1. Students are able to understand First-Order Differential Equation, Second-Order Differential Equation, Laplace Transforms, Fourier Series, and Fourier Transform	PLO2
	2. Students are able to analyse electrical circuit problems using First-Order Differential Equation, Second-Order Differential Equation, and Fourier Series	PLO3
	3. Students are able to solve electrical circuits problems using Laplace Transforms in teamwork.	PLO7
Content	 First-Order Differential Equation. Second-Order Differential Equation. Laplace Transforms. Fourier Series and Fourier Transform 	

MODULE HANDBOOK DESCRIPTION

Examination forms	Written case studyMidterm and final test
Study and examination requirements	The final grade in the module is composed of: a. Case assessment: 30% b. Midterm assessment: 35% c. Final assessment: 35% Students must have a final grade of 65% or higher to pass
Reading list	 Supriono, 2018, Matematika Teknik I, Universitas Mataram Press. Erwin Kreyszig, 2011, Advanced Engineering Mathematics 10th Ed., John Wiley & Sons. Dean G. Duffy, 2009, Advanced Engineering Mathematics with MATLAB 2nd Ed. Chapman & Hall. Philip P.G. Dyke, 2004, An Introduction to Laplace Transforms and Fourier Series, Springer Undergraduate Mathematics Series.