ELECTRICAL ENGINEERING DEPARTMENT ENGINEERING FACULTY UNIVERSITY OF MATARAM

Module designation	Energy Planning	
Code	FBA0013	
Semester(s) in which the module is taught	6/third year	
Person responsible for the module	Dr.Rosmaliati, S.T., M.T.	
Language	Indonesian/English	
Relation to curriculum	Free Elective for Electrical Power System Engineering	ng
Teaching methods	lectures, small group discussion, case base method.	
Workload (incl. contact hours, self-study hours)	 Contact minutes every week, each week of the 16 weeks/semester: Lectures (incl. on-site lectures): 2 x 50 minutes Exercises and Assignments: 2 x 60 minutes Self-study: 2 x 60 minutes. Total study hours = 5 hours 40 minutes/week. 	
Credit points	2 SKS (~ 3.2 ECTS)	
Required and recommended prerequisites for joining the module	 Engineering Economics Energy Conversion 	
Module objectives/ intended learning outcomes	1. Students are able to explain the basic concept of energy planning systems, units of energy, and primary and secondary energy.	Р3
	2. Students are able to explain the development of regulations and policies in the energy sector.	Р3
	3. Students are able to plan and evaluate the energy needed in demand (demand and supply) in a particular area.	P4, P8
	4. Students are able to design an energy system (reference energy system).	P4
	5. Students are able to apply and analyse methods of energy demand forecasting.	P4, P8

MODULE HANDBOOK DESCRIPTION

	6. Students are able to explain and compile energy databases.	P3, P4, P8
	7. Students are able to compile and analyse energy modeling.	P3, P4, P8
Content	This course provides an overview to students about the representation of energy fossil and new energy sources (NRE), current and future energy is substitution of fossil energy into NRE, the current impact of the use of fossil or NRE energy on envir conditions, climate, availability of energy sources policies in the development of NRE, which are sup factors in energy planning baselines, energy datal techniques, analysing commodity and energy bala compiling energy profiles, and creating and analy models. This course material includes:	needs with the and future conmental , government pporting base collection mces,
	 Introduction to Energy Planning Energy Sector Restructuring Energy Policy Scope of Energy Planning Interconnection of Energy Use and Economy Elasticity and Intensity of Energy Use Demand Approach and Supply Approach Final Energy and End Use Energy Division of Energy User Sectors Characteristics of Energy User Sectors Availability of Energy Demand Estimation Reference Energy System Energy Reserves and Potentials Primary Energy Production Secondary Energy Production Energy Modeling Energy Database Coverage Energy Classification by Type Commodity Balance and Energy Balance Energy Transformation 	
	 18. Modeling 19. Energy Modeling 20. Energy Database Coverage 21. Energy Unit Systems and Conversions 22. Energy Classification by Type 23. Commodity Balance and Energy Balance 	

Examination forms	Written and oral case studyMidterm and final test
Study and examination requirements	The final grade in the module is composed of: a. Case assessment: 2 x 30% = 60% b. Midterm assessment: 20% c. Final assessment: 20% Students must have a final grade of 65% or higher to pass
Reading list	 Winarno, Oetomo., 2007, "Perencanaan Energi dan Profil Energi", CAREPI project, Indonesia. Hanke, J. E., & amp; Wichern, D. W. (2009). Business Forecasting. New Jersey: Pearson Prentice Hall. LEAP Applications, Stockholm Environment Institut, http://www.energycommunity.org