## ELECTRICAL ENGINEERING DEPARTMENT ENGINEERING FACULTY



## UNIVERSITY OF MATARAM

## MODULE HANDBOOK DESCRIPTION

| Module designation                                                     | Optoelectronics                                                                                                                                                                                                            |      |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Code                                                                   | FBB0003                                                                                                                                                                                                                    |      |
| Semester(s) in which<br>the module is taught                           | 6/third year                                                                                                                                                                                                               |      |
| Person responsible for the module                                      | I Made Budi Suksmadana, S.T., M.T.,                                                                                                                                                                                        |      |
| Language                                                               | Indonesian/English                                                                                                                                                                                                         |      |
| Relation to curriculum                                                 | Elective for Electronics Engineering                                                                                                                                                                                       |      |
| Teaching methods                                                       | lectures, small group discussion, case base method.                                                                                                                                                                        |      |
| Workload (incl. contact hours, self-study hours)                       | Contact minutes every week, each week of the 16<br>weeks/semester:<br>Lectures: 2 x 50 minutes<br>Exercises and Assignments: 2 x 60 minutes<br>Self-study: 2 x 60 minutes.<br>Total study hours = 5 hours 40 minutes/week. |      |
| Credit points                                                          | 2 SKS (~ 3.2 ECTS)                                                                                                                                                                                                         |      |
| Required and<br>recommended<br>prerequisites for joining<br>the module | <ul> <li>FBS1211 Physics II</li> <li>FBS2125 Basic Electronics</li> <li>FBS2235 Microprocessor System</li> </ul>                                                                                                           |      |
| Module objectives/<br>intended learning<br>outcomes                    | 1. Students are able to analyse Optoelectronic<br>Sensors Technologies and Application Areas                                                                                                                               | PLO3 |
|                                                                        | 2. Students are able to design students Fiber<br>Optic Sensors in Structural Health Monitoring<br>and Electro-optic Gyroscopes systems                                                                                     | PLO4 |
|                                                                        | 3. Students are able to continue to improve their knowledge about the development of optoelectronics and its use in the present and in the future                                                                          | PLO9 |

| Content                               | This lecture discusses a comprehensive overview of the technologies and applications of optoelectronic sensors. Based on the R&D experience of more than 70 engineers and scientists, highly representative of the academic and industrial community in this area, and provides a broad and accurate description of the state-of-the-art optoelectronic technologies for sensing. The most innovative approaches, such as the use of photonic crystals, squeezed states of light and microresonators for sensing, are considered. Application areas range from environment to medicine and healthcare, from aeronautics, space, and defence to food and agriculture. |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Examination forms                     | <ul><li>Written case study</li><li>Midterm and final test</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Study and examination<br>requirements | <ul> <li>The final grade in the module is composed of:</li> <li>a. Attendance: 5%</li> <li>b. Case assessment: 3 x 15% = 25%</li> <li>c. Midterm assessment: 35%</li> <li>d. Final assessment: 35%</li> <li>Students must have a final grade of 65% or higher to pass</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |
| Reading list                          | <ol> <li>G. C. Righini, A. Tajani, A. Cutolo, and U. of S. Ital, AN<br/>INTRODUCTION TO OPTOELECTRONIC SENSORS. World<br/>Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore<br/>596224, 2009</li> <li>J. Wilson and J. Hawkes, Optoelectronics An Introduction. Prentice<br/>Hall, 1998.</li> </ol>                                                                                                                                                                                                                                                                                                                                                     |