ELECTRICAL ENGINEERING DEPARTMENT ENGINEERING FACULTY UNIVERSITY OF MATARAM

MODULE HANDBOOK DESCRIPTION

Module designation	Artificial Intelligence	
Code	FBB0004	
Semester(s) in which the module is taught	6 / third year	
Person responsible for the module	A.S.Rachman, ST., MT.	
Language	Indonesian	
Relation to curriculum	Free elective for Electronics engineering	
Teaching methods	lectures, small group discussion, project & case base method.	
Workload (incl. contact hours, self-study hours)	 Contact minutes every week, each week of the 16 week Lectures: 3 x 50 minutes Exercises and Assignments: 3 x 60 minutes Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week. 	eks/semester:
Credit points	2 SKS (~3.2 ECTS)	
Required and recommended prerequisites for joining the module	-	
Module objectives/ intended learning outcomes	Students are able to differentiate analytical methods using artificial intelligence.	PLO3 (H)
	2. Students are able to plan the choice of appropriate artificial intelligence techniques to solve simple engineering problems.	PLO4 (M)
	3. Students are able to implement and evaluate artificial intelligence methods and use them to solve problems in electrical engineering.	PLO5 (L) , PLO9 (L)
Content	 Kecerdasan buatan; artificial neural network (ANN); fuzzy logic; genetic algorithm (GA); ant colony optimization (ACO); support vector machine (SVM); deep learning 	

Examination forms	- Case based - Project based
Study and examination requirements	The final grade in the module is composed of: a. Case I assessment: 20% b. Case II assessment: 20% c. Project based: 60% Students must have a final grade of 65% or higher to pass
Reading list	 Stuart J. Russel and Peter Norvig 2012, Artificial Intelligence A Modern Approach, Prentice Hall. David Poole and Alan Mackworth, 2010, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 2010. Nils J. Nilsson, 2010, The Quest of Artificial Intelligence, Cambridge University Press. Timothy J. Ross, 2012, Fuzzy Logic with Engineering Applications, John Wiley & Sons, 3rd Edition. S.N. Sivanandam, S.N. Deepa, 2009, Introduction to Genetic Algorithms, Springer, 2008