MODULE HANDBOOK DESCRIPTION

Module designation	Digital Electronics	
Code	FBB3103	
Semester(s) in which the module is taught	5 / third year	
Person responsible for the module	I Made Budi Suksmadana, S.T., M.T	
Language	Indonesian	
Relation to curriculum	Compulsory for Electronics	
Teaching methods	Small group discussion, case base method.	
Workload (incl. contact hours, self-study hours)	Contact minutes every week, each week of the 16 weeks/semester : - Lectures: 2×50 minutes - Exercises and Assignments: 2×60 minutes - Private study: 2×60 minutes. Total study hours $=5$ hours 40 minutes $/$ week	
Credit points	2 ($\sim 3,2 \mathrm{ECTS}$)	
Required and recommended prerequisites for joining the module	- Logic Circuit (FBS1107)	
Module objectives/intended learning outcomes	1. Students are able to explain digital electronic systems. 2. Students are able to explain various number systems and binary codes. 3. Students are able to perform digital arithmetic operations. 4. Students are able to explain logic gates and related devices. 5. Students are able to explain logic families. 6. Students are able to perform digital boolean algebra and simplification techniques. 7. Students are able to explain data conversion circuits - D/A and A/D converters. 8. Students are able to explain data conversion circuits - D/A and A/D converters.	$\begin{aligned} & \text { PLO3 } \\ & \text { PLO4 } \end{aligned}$

| | 9. Students are able to design and try out the design
 of arithmetic circuits, multiplexers and
 demultiplexers using simulation programs.
 10. Students are able to design and try out the design
 of flip-flops and related devices, counters and
 registers using simulation programs. | PLO4 and |
| :--- | :--- | :--- | :--- |
| PLO5 | | |

