

| Module designation                                                     | Deep Neural Network                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Code                                                                   | FBC001                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Semester(s) in which the module is taught                              | 7/fourth year                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Person responsible for the module                                      | Bulkis Kanata, ST., MT.                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Language                                                               | Indonesian                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Relation to curriculum                                                 | Free Elective                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Teaching methods                                                       | lectures, small group discussion, case base method.                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Workload (incl. contact<br>hours, self-study hours)                    | <ul> <li>Contact minutes every week, each week of the 16<br/>weeks/semester:</li> <li>Lectures: 2 x 50 minutes</li> <li>Exercises and Assignments: 2 x 60 minutes</li> <li>Private study: 2 x 60 minutes.</li> <li>total study hours = 5 hours 40 minutes/week</li> </ul>                                                                                                                                                                  |          |
| Credit points                                                          | 2 SKS (~ 3.2 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Required and<br>recommended<br>prerequisites for joining<br>the module | -                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Module<br>objectives/intended<br>learning outcomes                     | 1. Students are able to explain: Definition of<br>Artificial Neural Network (ANN), Elements of<br>Deep Neural Network (DNN), Architecture and<br>algorithms of Convolutional neural networks<br>(CNN), Recurrent Neural Network (RNN),<br>Autoencoder, Generative Adversarial Network<br>(GAN), Restricted Boltzmann Machine (RBM),<br>Deep Belief Network (DBN), Recursive Neural<br>Network (RecNN), Capsule Neural Network<br>(CapsNet) | PLO3 50% |
|                                                                        | 2. Students are able to design of programs to apply DNN (CNN, RNN, RBM)                                                                                                                                                                                                                                                                                                                                                                    | PLO4 30% |

## MODULE HANDBOOK DESCRIPTION

|                                    | 3. Students are able to validate and analyze the design of CNN, RNN and RBM.                                                                                                                                                                                                                                                                                                                                                          | PLO9 20% |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| Content                            | Definition of Artificial Neural Network (ANN), Elements of Deep<br>Neural Network (DNN), Architecture and algorithms of<br>Convolutional Neural Networks (CNN), Recurrent Neural<br>Network (RNN), Autoencoder, Generative Adversarial Network<br>(GAN), Restricted Boltzmann Machine (RBM), Deep Belief<br>Network (DBN), Recursive Neural Network (RecNN), Capsule<br>Neural Network (CapsNet)                                      |          |  |
| Examination forms                  | <ul> <li>Written case study</li> <li>Create program</li> <li>Presentation case study</li> <li>Midterm and final test</li> </ul>                                                                                                                                                                                                                                                                                                       |          |  |
| Study and examination requirements | The final grade in the module is composed of:<br>a. Attendance: 10%<br>b. Case I assessment: 15%<br>c. Case II assesment: 15%<br>d. Midterm assessment: 30%<br>e. Final assessment: 30%                                                                                                                                                                                                                                               |          |  |
| Reading list                       | <ol> <li>Aggarwal, charu C. Neural Network and Deep Learning. (2018).<br/>doi:10.1007/978-3-319-94463-0.</li> <li>Geron, A. Hands-On Machine Learning with Scikit-Learn and<br/>TensorFlow Concepts, Tools, and Techniques to Build Intelligent<br/>Systems. (O'Reilly, 2017).</li> <li>LazyProgrammer. Deep Learning in Python, Master with Modern<br/>Neural networks written in Python, Theano, and TensorFlow. (2016).</li> </ol> |          |  |