

Module designation Special Topic on Telecommunication Code **FBC0009** Semester(s) in which 6 / third year the module is taught Person responsible for Made Sutha Yadnya, S.T., M.T. the module Language Indonesian/English Relation to curriculum Free Elective for Telecommunication Engineering. Teaching methods Lectures, small group discussion, case base method. Contact minutes every week, each week of the 16 Workload (incl. contact weeks/semester: hours, self-study hours) • Lectures: 2 x 50 minutes • Exercises and Assignments: 2 x 60 minutes • Self-study: 2 x 60 minutes. Total study hours = 5 hours 40 minutes/week. Credit points 2 SKS (~ 3.2 ECTS) Required and _ recommended prerequisites for joining the module Module 1. Students are able to analyse The Wireless PLO3 Channel: Propagation and Fading, SISO objectives/intended Channel Models, MIMO Channel Models, learning outcomes OFDM, Synchronization for OFDM, Channel Estimation, PAPR Reduction, and Inter-Cell Interference Mitigation Techniques.

MODULE HANDBOOK DESCRIPTION

	2. Students are able to reconstruct MIMO: Channel Capacity, Antenna Diversity and Space-Time Coding Techniques, Signal Detection for Spatially Multiplexed MIMO Systems, Exploiting Channel State Information, and Multi User MIMO.PLO4		
	3. Students are able to summarize specific PLO9 technical knowledge on telecommunications systems and their mitigation for lifelong learning needs.		
Content	Part I presents the fundamental concepts and MATLAB_ programs for simulation of wireless channel modeling techniques, including large-scale fading, small-scale fading, indoor and outdoor channel modeling, SISO channel modeling, and MIMO channel modeling.		
	Part II presents the fundamental concepts and MATLAB_ programs for simulation of OFDM transmission techniques including OFDM basics, synchronization, channel estimation, peak-to-average power ratio reduction, and intercell interference mitigation.		
	Part III presents the fundamental concepts and MATLAB_ programs for simulation of MIMO techniques including MIMO channel capacity, space diversity and space-time codes,		
Examination forms	Written case studyMidterm and final test		
Study and examination	The final grade in the module is composed of:		
requirements	 Attendance: 10% Case assessment: 4 x 15% = 60% Midterm assessment: 15% Final assessment: 15% Students must have a final grade of 65% or higher to pass 		

Reading list	1.	Rappaport, T.S., 2001, Wireless Communications: Principles
		and Practice 2/E, Prentice Hall.
	2.	IEEE, 2001, 802.16.3c-01/29r4. Channel Models for Fixed
		Wireless Applications.
	3.	
		Project; Technical Specification Group Radio
	4.	Access Network; Spatial Channel Model For Multiple Input
		Multiple Mutput Simulations (Release 7).
	5.	Xinmin, D., Haimovich, A.M., and Garcia-Frias, J., May
		2003, Decision-directed iterative channel estimation
		forMIMO systems. IEEE ICC'03, vol. 4, pp. 2326–2329.
	6.	Hoeher, P. and Tufvesson, F., 1999, Channel estimation with
		superimposed pilot sequence. IEEE GLOBECOM'99, pp.
		2162–2166.