

MODULE HANDBOOK DESCRIPTION

Module designation	Smart IoT Device	
Code	FBD0007	
Semester(s) in which the module is taught	6 / third year	
Person responsible for the module	A.S.Rachman, ST., MT.	
Language	Indonesian	
Relation to curriculum	Elective Course for Computer Engineering	
Teaching methods	lectures, small group discussion, project & case bas	se method.
Workload (incl. contact hours, self-study hours)	 Contact minutes every week, each week of the 16 we Lectures: 3 x 50 minutes Exercises and Assignments: 3 x 60 minutes Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week. 	eks/semester:
Credit points	2 SKS (~3.2 ECTS)	
Required and recommended prerequisites for joining the module	-	
Module objectives/intended learning outcomes	1. Students are able to study and understand about Naive Bayes classifier examples by hand.	PLO3 (M)
	 Students are able to analyse about how to implement Naive Bayes classifier from scratch in Python and C. Students are able to learn about how to build an AIoT system based on Naive Bayes classifier and Arduino. 	PLO4 (H)
	4. Students are able to design with the AI mainstream development frameworks in the industry.	PLO8 (L)

Content	 Artificial Intelligence and IoT Introduction. Implement Naive Bayes classifier from scratch in Python and C. Implement Naive Bayes classifier on microcontrollers. Build an AIoT system based on Naive Bayes classifier and Arduino.
Examination forms	Case basedProject based
Study and examination requirements	The final grade in the module is composed of: a. Case I assessment: 20% b. Case II assessment: 20% c. Project based: 60% Students must have a final grade of 65% or higher to pass
Reading list	 Erwin Setiawan. 2020. Hands-On IoT: Wi-Fi and Embedded Web Development Erwin Setiawan, 2018. Hands-On ESP8266: Mastering Basic Peripherals Neil Storey, 2017. Electronics: A Systems Approach, 6th edition. Pearson New International Edition. John Birds, 2021. Electrical and Electronic Principles and Technology, Third Edition 7th Edition, Routledge.