

Module designation	Discrete Mathematics	
Code	FBD3101	
Semester(s) in which the module is taught	5 / third year	
Person responsible for the module	A.Sjamsjiar Rachman, ST., MT.	
Language	Indonesian	
Relation to curriculum	Compulsory for Computer System	
Teaching methods	lectures, small group discussion, case base method.	
Workload (incl. contact hours, self-study hours)	 Contact minutes every week, each week of the 16 weeks/semester: Lectures: 3 x 50 minutes Exercises and Assignments: 3 x 60 minutes Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week. 	
Credit points	3 SKS (~ 4.8 ECTS)	
Required and recommended prerequisites for joining the module	-	
Module objectives/intended learning outcomes	1. Students are able to understand discrete objects and analyze an argument in discrete structure problems.	PLO3
	2. Students are able to construct and design an argument in discrete structure problems, and can apply them to solve discrete structured problems.	PLO4
	3. Students are able to experiment and explain the connection of basic concepts of discrete mathematics with other branches of science.	PLO5
Content	This course discusses the problem of sets, relations and functions, introducing graphs, recurring relations, and introducing combinatorics. As a support for the data structure courses, graph theory, and combinatoric.	

MODULE HANDBOOK DESCRIPTION

Examination forms	Written case studyMidterm and final test
Study and examination requirements	The final grade in the module is composed of: a. Case I assessment: 15% b. Case II assessment: 15% c. Midterm assessment: 35% d. Final assessment: 35% Students must have a final grade of 65% or higher to pass
Reading list	 Kenneth H. Rosen, 2011, "Discrete Mathematics and Its Applications" 7th ed., McGraw-Hill. Grimaldi, R. P., 2006, "Discrete and Combinatorial Mathematics" 5th ed., Addison-Wesley Publ. Co. Liu, C. L. and DP Mohepatra, 2008, "Elements of DiscreteMathematics", 3rd ed., McGraw-Hill Inc.