

MODULE HANDBOOK DESCRIPTION

Module designation	Physics I	
Code	FBS1103	
Semester(s) in which the module is taught	1/first year	
Person responsible for the module	Dr.rer.nat Teti Zubaidah, S.T., M.T.	
Language	Indonesian/English	
Relation to curriculum	Compulsory for all majors	
Teaching methods	lectures, small group discussion, case base method.	
Workload (incl. contact hours, self-study hours)	Contact minutes every week, each week of the 16 weeks/semester: • Lectures: 3 x 50 minutes • Exercises and Assignments: 3 x 60 minutes • Self-study: 3 x 60 minutes. Total study hours = 8 hours 30 minutes/week.	
Credit points	3 SKS (~ 4.8 ECTS)	
Required and recommended prerequisites for joining the module	-	
Module objectives/intended learning outcomes	1. Students are able to understand the basic concepts of measurements, quantities & units, mechanics, kinematics, thermodynamics, and energy conservations.	PLO2
	2. Students are able to analyse physical problems related to mechanics and kinematics.	PLO3
	3. Students are able to solve daily life physical problems in teamwork.	PLO7
Content	Introduction to College Physics, Physics & Measurements, Scalar & Vector, Motion in one-dimension with constant velocity, Motion in one-dimension with acceleration & fall free motion, Motion in two-dimension, Circular motion, Universal gravitation, Newton's Laws, Momentum & Collision, Work, Energy & Power, Laws of thermodynamics, Energy conservations.	

Examination forms	Written case studyMidterm and final test
Study and examination requirements	The final grade in the module is composed of: a. Attendance: 10% b. Case assessment: 4 x 15% = 60% c. Midterm assessment: 15% d. Final assessment: 15% Students must have a final grade of 65% or higher to pass
Reading list	 Giancoli D.C., 2014, Physics - Principle with Application Vol. 17th Ed., Pearson. Serway R.A. & Jewett Jr. J.W., 2014, Physics for Scientists and Engineers with Modern Physics 9th Ed., BROOKS/COLE CENGAGE Learning. Paul Peter Urone & Roger Hinrichs, 2020, College Physics, OpenStax. Samuel J. Ling, Jeff Sanny, William Moebs, 2021, University Physics Volume 1, OpenStax. Samuel J. Ling, Jeff Sanny, William Moebs, 2021, University Physics Volume 2, OpenStax.