

## MODULE HANDBOOK DESCRIPTION

| Module designation                                                     | Control System Laboratory                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code                                                                   | FBS3140                                                                                                                                                                                                                                                             |
| Semester(s) in which the module is taught                              | 5/third year                                                                                                                                                                                                                                                        |
| Person responsible for the module                                      | Supriono, ST, MT.                                                                                                                                                                                                                                                   |
| Language                                                               | Indonesian                                                                                                                                                                                                                                                          |
| Relation to curriculum                                                 | Compulsory for all Majors                                                                                                                                                                                                                                           |
| Teaching methods                                                       | Contextual Instruction (CI)                                                                                                                                                                                                                                         |
| Workload (incl. contact<br>hours, self-study hours)                    | Contact minutes every week, each week of<br>the 16 weeks/semester :<br>• Practice : 1 x 50 minutes<br>• Data analysis : 1 x 60 minutes<br>• Writing report : 1 x 60 minutes.<br>Total study hours = 2 hours 50 minutes/week                                         |
| Credit points                                                          | 1 (~ 1,6 ECTS)                                                                                                                                                                                                                                                      |
| Required and<br>recommended<br>prerequisites for joining<br>the module | <ul> <li>Control System (F BS3139)</li> <li>Electrical Circuit I (FBS1213)</li> <li>Electrical Circuit II (FBS2122)</li> </ul>                                                                                                                                      |
| Module<br>objectives/intended<br>learning outcomes                     | 1. Students are able to analyse the basic concepts<br>of closed loop control systems, the effect of<br>frequency changes on the control system, and<br>PID control systems for various plants.                                                                      |
|                                                                        | 2. Students are able to design speed control system, position control system, gain variation on closed-loop control systems, frequency response on an amplifier, and frequency response on a filter based on instructions from the control system practicum module. |

|                                    | 5. Students are able to compare the speed control<br>system, position control system, gain variation<br>on closed-loop control systems, frequency<br>response on an amplifier, and frequency<br>response on a filter with the experimental<br>results and make conclusions then report the<br>results.       |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Content                            | <ol> <li>Speed control system experiment on a DC motor</li> <li>Position control system experiment on a DC motor</li> <li>Gain variation experiments on closed-loop control systems</li> <li>Frequency response experiments on an Amplifier.</li> <li>Frequency response experiments on a filter.</li> </ol> |
| Examination forms                  | <ol> <li>Pre-test</li> <li>Practice skills</li> <li>Practice report</li> <li>Response</li> </ol>                                                                                                                                                                                                             |
| Study and examination requirements | <ul> <li>The final grade in the module is composed of:</li> <li>1. Pre-test and practice skills = 20%</li> <li>2. Practice report and response = 80%</li> <li>Students must have a final grade of 65% or higher to pass</li> </ul>                                                                           |
| Reading list                       | <ol> <li>Ogata, K., 2020, "Modern Control Engineering", Prentice<br/>Hall.</li> </ol>                                                                                                                                                                                                                        |