MODULE HANDBOOK DESCRIPTION

Module designation	Calculus II	
Code	FBS1212	
Semester(s) in which the module is taught	2 / first year	
Person responsible for the module	Suthami Ariessaputra, ST. MEng. Dr. I Made Ginarsa, ST.; MT. Lalu A. Syamsul Irfan Akbar, ST., M.Eng. Sabar Nababan, ST., MT.	
Language	Indonesian	
Relation to curriculum	Compulsory	
Teaching methods	lectures, small group discussion, case base method	
Workload (incl. contact hours, self-study hours)	Contact minutes every week, each week of the 16 Weeks / semester: - Lectures: 3×50 minutes. - Exercises and Assignments: 3×60 minutes. - Self-learning: 3×60 minutes. total study hours $=8$ hours 40 minutes $/$ week	
Credit points	3 SKS ($\sim 4,8$ ECTS)	
Required and recommended prerequisites for joining the module	Calculus I (FBS1104) A student must have attended at least 75% of the lectures to sit in the exams.	
Module objectives/intended learning outcomes	1. Students are able to calculate integral functions	PLO2
	2. Students are able to calculate integrals based on integration techniques.	PLO2
	3. Students are able to analyze integral applications.	PLO2
	4. Students are able to solve questions on Cartesian and polar coordinates.	PLO3
	5. Students are able to complete the integration on multiple integrals.	PLO4

	6. Students are able to solve vector problems in the field.	PLO3
	7. Students are able to solve partial derivatives.	PLO3
Content	1. Integral. 2. Integration techniques. 3. Integral application. 4. Polar coordinates 5. Multiple Integral 6. In-plane vectors. 7. Partial Derivatives	
Examination forms	- Multiple choice examination and Essay. - Midterm and final test	
Study and examination requirements	The final grade in the module is composed of: a. Multiple choice examination and Essay scor b. Midterm assessment: 30% c. Final assessment: 40% Students must have a final grade of 65\% or higher to	$30 \% .$ ass
Reading list	1. Thomas, Jr., G.B., and Finney, R.L., 1998, "Cal Analytic Geometri, 9TH edition", Addison-Wes Publishing Company, Inc. USA. 2. Varberg, D., Purcell, E. and Rigdon, S., 2007. C ed.,. Pearson Prentice Hall, Upper Saddle River 3. Edwin J. Purcell and Dale E. Varberg. 1996. "C Analytic Geometry", Prentice Hall PTR.	us and ulus. 9th J., ulus with

