

MODULE HANDBOOK DESCRIPTION

Module designation	Calculus II		
Code	FBS1212		
Semester(s) in which the module is taught	2/first year		
Person responsible for the module	Suthami Ariessaputra, ST. MEng. Dr. I Made Ginarsa, ST.; MT. Lalu A. Syamsul Irfan Akbar, ST., M.Eng. Sabar Nababan, ST., MT.		
Language	Indonesian		
Relation to curriculum	Compulsory		
Teaching methods	lectures, small group discussion, case base method		
Workload (incl. contact hours, self-study hours)	Contact minutes every week, each week of the 16 Weeks / semester: • Lectures: 3 × 50 minutes. • Exercises and Assignments: 3 × 60 minutes. • Self-learning: 3 × 60 minutes. total study hours = 8 hours 40 minutes/week		
Credit points	3 SKS (~ 4,8 ECTS)		
Required and recommended prerequisites for joining the module	Calculus I (FBS1104) A student must have attended at least 75% of the lectures to sit in the exams.		
Module objectives/intended learning outcomes	1. Students are able to calculate integral functions	PLO2	
	2. Students are able to calculate integrals based on integration techniques.	PLO2	
	3. Students are able to analyze integral applications.	PLO2	
	4. Students are able to solve questions on Cartesian and polar coordinates.	PLO3	
	5. Students are able to complete the integration on multiple integrals.	PLO4	

	6. Students are able to solve vector problems in the field.	PLO3	
	7. Students are able to solve partial derivatives.	PLO3	
Content	 Integral. Integration techniques. Integral application. Polar coordinates Multiple Integral In-plane vectors. Partial Derivatives 		
Examination forms	Multiple choice examination and Essay.Midterm and final test		
Study and examination requirements	The final grade in the module is composed of: a. Multiple choice examination and Essay score: 30%. b. Midterm assessment: 30% c. Final assessment: 40% Students must have a final grade of 65% or higher to pass		
Reading list	 Thomas, Jr., G.B., and Finney, R.L., 1998, "Calculus and Analytic Geometri, 9TH edition", Addison-Wesley Publishing Company, Inc. USA. Varberg, D., Purcell, E. and Rigdon, S., 2007. Calculus. 9th ed., Pearson Prentice Hall, Upper Saddle River, N.J., Edwin J. Purcell and Dale E. Varberg. 1996. "Calculus with Analytic Geometry", Prentice Hall PTR. 		